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Monte Carlo investigation of the phase transition in CsLiSO4 
and CsLiCr04 crystais 

N G Zamkova and V I Zinenko 
L V k n s k y  Institute of Physics, 660036 Krasnoyarsk, Russia 

Received 20 October 1993, in final form 18 April 1994 

Abstract. We have studied a model of the order-disorder phase Vansitions in CsLiSOd and 
CsLiC104. In this model a B& tetrahedm has four equilibrium orientations in a disordered 
hexagonal phase. The constants of the interaction between ordered BX, goups are calculated 
in the flamework of the electrostatic model. It is shown that these consfants have a competitive 
nafllle. The Monte Carlo method is applied to SNdy the phase diagrams and thermodynamic 
properties of the phase transitions. The mults obtained are in good agreement with experimental 
data. 

1. Introduction 

The isomorphic crystals CsLiSO4 and CsLiCrO4 belong to a large class of compounds 
with the general chemical formula ACBXq, where A and C are alkali metals and BXq 
is the tetrahedral group: SO4, Se04, GO4, ZnCl4, etc. This family of the crystals has 
recently been the subject of extensive experimental investigations and several hundreds of 
papers on this topic have been published to date. This interest is caused by the great 
variety of structural phase transitions in these compounds including the transitions into 
incommensurate phases. Information conceming the crystal structures, phase diagrams and 
behaviour of the physical properties near the phase transition in these compounds can be 
found in the review papers by Eysel (1975) and Muller and Roy (1974) and in the book by 
Aleksandrov and Bemosikov (1993). 

It is important to emphasize here that all the known crystal structures of these compounds 
have a common feature, namely they can be considered as slight distortions of the prototype 
a-KzSO4 structure of D& (Pbsfmmc) symmetry. The difference between the smctures of 
the different compounds are caused by the orientations of BXq tetrahedra relative to each 
other as well as to the crystallographic axes. In the hexagonal phase D& (figure 1) it 
is obligatory that the tetrahedral groups BXq have several equivalent orientations and the 
observed variety of structural phase transitions occurs because of the different schemes of 
ordering of the BXq groups accompanied by the slight ionic displacements. 

Despite the huge experimental literature, only a few papers on the microscopic theory 
of the topic considered are available (Yamada and Hamaya 1983, Zinenko and Blat 1978, 
Lu and Hardy 1990, Edwardson et al 1987, Zamkova and Zinenko 1992). Zamkova and 
Zinenko (1992) have calculated the effective constants of the interaction between BXq 
tetrahedra in the framework of an electrostatic model and have shown that these constants 
are of a competititve nature. This competition of the interactions leads to a large variety of 
phase diagrams and behaviours of the physical properties near the phase transitions in the 
ACBXq compounds. 
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,CB& viewe F i w  1. The crystal m c t u r e  of the high-temperature phase ( own [OOl]. 
The oiangles represent the B& molecular ions: The Aand C metals are shown as open and 
full circles, respectively. 

In the present paper we apply the Monte Carlo (Mc) method to investigate the phase 
transitions in the crystals CsLiS04 and CsLiCr04. The model of the phase transitions in the 
ACBXq compounds, the method and results of the calculations of the interaction,constants 
are presented in section 2. The thermodynamic characteristics of the phase transitions 
calculated by the MC method are presented in section 3. The results are compared with the 
experimental data and discussed in  section 4. 

2. The model and calculation of the interaction constants 

CsLiSO4 and CsLiCr04 have orthorhombic symmetry with the space group Dit and with 
four molecules in the unit cell at high temperatures, CsLiSO4 at T, = 202 K (Aleksandrov et 
a1 1980) and CsLiCr04 at Tc = 427 K (Aleksandrov etal 1988) undergo a ferroelastic phase 
transition into a monoclinic phase with the space group C:, (Z = 4). In these compounds 
the hexagonal phase is not experimentally observed as the temperature is increased up to 
the decomposition value (about 600 K for CsLiSO4 and about 1000 g for CsLiCr04); The 
unit-cell parameters of both crystals are rather similaro (a = 5.456 A, b. = 9.456 A and 
c = 8.820 A for CsLiS04; a = 5.684 A, 6 = 9.860 A and c = 8.904 A for CsLiCr04). 
This difference is neglected in our calculation. 

In the calculations of the BXq-BXq interaction constants and in investigations of the 
phase hansitions the model proposed by Zinenko and Blat (1978) is used. In this model 
a BXq temhedron has four equilibrium orientations (figure 2). The BXq-BX, interaction 
constants xi@) were calculated from the electrostatic model (Zamkova and Zinenko 1992). 

The Hamiltonian of the model is 
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Figure 2. Four positions of BX4 tetrahedra in the hexagonal phase 

where 
1 I’II I 0 if BX, group occupies the position i 

in the opposite case 
c, = 

and the fact that the unit cell of the hexagonal phase has two non-equivalent molecules is 
taken into account (I and II relate to the sublattices indicated in figure 1). V g ( r  - r’) is the 
octupole-octupole interaction matrix; dA and & are the dipole momens of metals A and C 
which have polarizabilities ccA and crc, respectively. It should be noted that, in the present 
calculations, CXA and 0rc are parameters of the theory because they have both electronic and 
ionic contributions. Dab and Fod are dipole-dipole and dipole-octupole interaciton matrices, 
respectively. So, the effective BX,-BX, interaction is a sum of the duect octupole-octupole 
interaction and indirect interaction through polarizable metal ions: 

H~~ = -; C V : ; ( r  - r’)C:(r)C!(r‘) - f C ~ y ( r  - r’)C!’(r)c,!’(r’) 

- E V : ; ” ( r  - r‘)C!(r)Cp(r’) (2) 

where 

v:(r) = vi!&-) + ~ A C C W ( ~ )  
f f A . C  PAS = 7 
(10 
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JF(q) = Ea@ + < A . c D ~ ~  (q). E,@ is the unit matrix and oi are the Euler angles. The 
interaction matrices VI.', VI,'' and V"," have four independent terms owing to the symmetry 
of the hexagonal phase and the equilibrium orientations (see figures 1 and 2): 

N G Zankova and V I  Zinenko 

A C  

/ R I  62 VI3 6 4 \  

The interaction tetrahedron BXq with five nearest metals of C type and six nearest metals 
of A type is taken into account in the calculations of matrices Fad in (3). The matrices D in 
(3) are calculated by the Ewald method. Integration in q-space was performed by the Gauss 
method. The values of polarizabilities were taken as acs = 0.392 A3 and q, i  = 0.058 A3. 
The octupole moment value I3 of the SO4 group, was fitted using the experimental value 
of the phase transition temperature (DE + Ck) for CsLiSO4, T, = 202 K 

I ~ ( s o ~ )  = 35.49 x esu cm3. 

The octupole moment 23 of Cr04 in comparison with 13 (SO4) was changed in proportion 
to the cube ratio of length Cr-0 to the length S-0: 

b ( ~ r 0 4 )  = 54.62 x esu cm3. 

The effective interaction constants $'(R) = Y Y ( R )  and !J'F(R) were calculated within 
six coordination spheres up to R =-&a0 and their~vahes are presented in table 1. As seen 
from this table the dependence of interaction constants on R is of a competitive character. 

Table 1. The effective interaction constants. 

v ~ ( R ) ,  C S L ~ S O ~  (K) V,:."(R), csLiCrO4 (K) 

R VI I VI2 VI3 VI4 VI I VI2 VI3 VI4 

(a2/3 + c2/4)'P 175.5 251.66 -544.15 -467.89 240.16 344.39 -744.63 -640.28 
(4a2/3+2/4)'D 101.37 65.32 86.4 50.28 138.72 89.39 118.24 68.79 

Y;'(R) = V ~ C R , ,  CsLiSO4 (K) = v ~ ( R ) ,  CsLiCrO4 (K) 

R VI I VI2 4 3  v14 VI I VI2 VI4 

a 500.5 325.14 -325.93 -501.29 684.91 444.94 -446.02 -685.99 
c -42.72 -41.14 43.83 45.4 -58.45 -56.3 59.98 62.13 

0 4  13.9 14.59 -14.92 -14.22 19.02 19.97 -20.41 -19.46 
(Qz + C')'" -3.38 -2.78 6.12 6.72 -4.63 -3.8 8.37 9.19 

3. Calculation of the thermodynamic properties 

The MC technique, which is applicable to Ising-like lattice models (Landau 1976, Binder 
1979) is used in the present study. The only change relates to the presence of four 
equilibrium positions of BXq groups (instead of two positions in Ising-like models). 
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The process of determining the thermodynamic values begins with the choice of an initial 
‘spin’ configuration for a system as a whole. Two initial ‘spin’ configurations (ordered and 
disordered) are used for the initial MC procedure at a low temperature and the proccdure 
starts with the last ‘spin’ configuration generated in the preceding calculation at increasing 
temperature. The program then proceeds through the lattice, considering each ‘spin’ (in 
order) as the reference ‘spin’ for trial turning. One of three positions for turning is chosen 
randomly. The relative probability of the two states is considered (Binder 1979): 

Equation (5) describes the probability of producing the uth state from the pth state. If 
pKu =- 1, the reference ‘spin’ is turned; otherwise a random number r is chosen from a 
set of random numbers generated uniformly in the interval from 0 to 1 and compared with 
,ow”. If r < ,ow”, the reference ‘spin’ is turned. E@ and E, in (5) are the energies of the 
states p and U. In the present work, only periodic boundary conditions were considered. 
The calculations were carried out on the N x N x N I  hexagonal three-dimensional lattice. 
Three sizes of the lattice ( N  = 16; N I  = 6, 12,24) are treated here. As seen from figure 3, 
the results of MC calculations are close to each other for different lattices, and below we 
shall discuss the results of calculations only for the lattice with N = 16 and N I  = 12. 

Figure 3. The temperature dependences of specific hed and susceptibility (arbitrary units) for 
lattices of different sizes with periodic boundary condition: X. N = 16, NI = 6; 0, N = 16, 
NI = 12; 0, N = 16. NI = 24. 

The thermodynamic quantities were calculated in the usual way (Landau 1976, Binder 
1979): 
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where U is the internal energy, C is the heat capacity, vi are order parameters which will 
be determined below, xi is the susceptibility and (AA)' = (A2) - (A)*.  

One MC step per 'spin' was N x N x NI 'spin' turning trials. The first 500-1000 
M c  steps were discarded and not used in computing averages. The average was carried 
out in two steps; after p MC steps, subaverages were determined for the group of states 
(usually p = 50) and then, after a number of subaverages (usually 85), final averages were 
computed. The calculations are repeated ai another temperature and so on. 

The structure of the ordered phase which resulted from MC simulation at a low 
temperature had the following occupation numbers: 

I U I1 

I1 

n:(R = 0) = n4(R = a )  = n3 (R  = b) = n2(R = c) = I 

n:(R = 0) = n:(R = ~ a )  = nF(R = b) = n1 ( R  = c) = 0 

n:(R = 0) = n' I (  R -a) - = ny(R = b) = n3 ( R  = c )  = 0 

ni (R = 0) = ni (R =a) = nP(R = b) = ny(R = c) = 0 

I1 (7) 

where a = ao, b = ,/=, c = ,/-. The values nf(R) ;e determined 
from MC data at the temperature T/Tc2 = 0.6. At lower temperatures the metastability 
problem arises, when the system is quenched from a disordered state. The results (7) 
coincide with the exact result of the ground-state structure of the finite system with periodic 
boundary conditions (Zamkova and Zinenko 1992). The ordered phase has monoclinic 
symmetry with the space group Ch and with four molecules in the unit cell. 

q1 = Inl(R = 0) + ni(R = 0) - n:(R = 0) - n:(R = 0)l 

The order parameters in the MC procedure are computed as 
I 

+ 
+ 

= a) +n:(R =a) - nf(R = a )  - n!JR = a)l 

= b) + ny(R = b) - n:(R = b) - ny(R = b)l 
+ Inj'(R = c) +n;(R = c)  - n:(R = c )  - n4 U (R = c)l 

~ ~ = ~ n , ( R = 0 ) - n 2 ( R = 0 ) + n ~ ( R = 0 ) - n ~ ( R = O ) I  I I 

+ Ini(R = a )  - n;'(R = a) + n:(R = a) - n:(R = a)[ 

+In f (R=b) -n?(R=b)+ny(R=b) -ny (R=b) l  

+ In;(R = c )  - n:'(R = c) + n;(R = c )  - ny(R = c)l 

where an equivalence of the unit-cell parameters 
into account. 

determining the averages) on an AT-486/50 computer. 

and bo of the hexagonal phase is taken 

The program, written in FORTRAN, required about 0.2 ms per 'spin' (included for 



Monte Carlo investigation of phase transition 9049 

4. Results 

The results of the calculations of the thermodynamic quantities are presented in figures 4-7 
and in table 2. The transition temperatures are calculated from the peak in the specific heat. 
Typical error bars near the critical points and far from the critical points are 9.7% and 3%, 
respectively (Sobol 1973, Landau 1976). 

‘1 

.. 
Figure 4. The temperature dependence of the internal energy U (in I:lql units). 

Figure 5. The tempemare dependences of the order parameters ‘11 and %: -, MC simulation; 
0, experimental data for CsLiSO4 (Aleksandrov eta1 1980): e, experimental data for CsLiCIoa 
(Alehandrov et nl 1988). 

Table 2. The phase transition temperahxes and the entropy changes. 

Tc2 (€3 A S d R  

Calculation Experiment Calculation Experiment 

CsLiSO4 Ta,p 202 0.3 0.2 
- CsLiCro4 370 -t 35.89 427 0.3 

GI (K) A S I I R  

Calculation Experiment Calculation Experiment 

CsLiSO4 76a i74 .5  - 0.2 - 
CsLiCrO4 1405*136.3 - 0.2 - 
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1 

Figure 6. The temperature depndence of fhe specific heat: -, M c  simulation; 0, 
experimental data (Aleksandrov et& 1980). 

Figure 7. The temperahre dependence of susceptibility (xo = 0.4 x io-'' m2 N-'): -, MC 
simulation; x. experimental data (Zmkov and Anistratov 1982). 

There are two successive phase transitions in both crystals CsLiSO4 and CsLiCrO4. We 
assume that these phase transitions are second order. The first to appear, as the temperature 
decreases, is caused by partial ordering of the B& tetrahedra. The partially ordered phase 
is described by the next occupation numbers (at the temperature when the value of the order 
parameter VI is equal to 1): 

I I I n j ( ~  = O) = n,(R = 0) = n,(R = a)  = n:(R = a)  = - 2 

n3(R = 0) = n,(R = 0) = n,(R = a)  = n,(R = a )  = 0 I I I I 

(9) n , ( R  11 = b) =n4(R I1 = b) = n,(R I1 = c )  =n,(R 11 = c )  = 

n;'(R = b)  = n z ( R  I1 = b) =ny(R = c) =n4(R I1 

2 

= c) = 0. 

The symmetry of the partial ordered phase is orthorhombic with the space group Dg and with 
four molecules in the unit cell. This phase is observed experimentally at high temperatures. 
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The D& -+ Dig phase transition is not observed for CsLiSO4 and CsLiCr04 but, as is 
seen from table 2, the calculated temperatures of the D& + Dit phase transition exceed 
the decomposition temperatures of both compounds. The temperature dependences of the 
internal energy, order parameter 171, heat capacity and susceptibility x,  at the phase transition 
from the hexagonal to the ortborhombic phase are shown in figures 4-7. 

As the temperature decreases further, the second phase transition is connected with full 
ordering of the BXq groups. This ordered phase is monoclinic with the space group C& 
and with four molecules in the unit cell. The DiZ + C& ferroelastic phase transition is 
observed experimentally for the CsLiSO4 and CsLiCrO4 crystals (Aleksandrov et a1 1980, 
1988). The spontaneous deformation uxy in the monoclinic phase is proportional to the 
order parameter 172 in the model under consideration and the corresponding susceptibility 
~2 is proportional to the elastic compliance s66 of the orthorhombic phase (Zamkov and 
Anistratov 1982). 

The calculated temperature dependences of the thermodynamic quantities at the Dii + 
C h  phase transition together with the available experimental data are shown in figures 4 7 .  
Changes in the entropy were found by integration of the areas under the curves C ( T ) / T .  
The computed and experimental values of the entropy change are presented in table 2. 
A comparison of the computed results with experimental data (Aleksandrov et al 1980, 
1988, Zamkov and Anistratov 1982) shows that they are in a very good agreement. The 
higher value of the phase transition temperature for CsLiCr04 in comparison CsLiSO4 is 
naturally described by the higher value of the octupole moment of CrO4 group. The results 
of the calculation of the entropy changes AS, and AS2 and the experimental value of 
AS2 are quite interesting (see table 2). These values are much lower than calculated in 
the mean-field approximation (AS1 + AS2 = 21112). The results reveal the presence of 
strong short-range correlations of the BXq groups in the disordered hexagonal and partially 
ordered orthorhombic phases. These correlations exist owing to the competitive nature of 
the effective interactions between the BXn tetrahedra. as seen from table 1. 

5. Conclusion 

We have applied the M c  method to study the orderdisorder phase transitions in CsLiSO4 
and CsLiCrO4. The effective constants of interactions between SO4 (GO4) groups were 
calculated in the framework of the electrostatic approximation. The results obtained show 
that treatment of the model by the Mc method yields a quantitative description of the 
thermodynamic properties of CsLiSO4 and CsLiCr04. The temperature dependences of the 
specific heat and susceptibility and a value for the entropy change for the crystal CsLiCr04 
are predicted by the theory. The experimental verification of these characteristics seems 
desirable. 
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